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Constrained Localization in Sensor Networks
Mona Mahmoudi and Guillermo Sapiro

Abstract— In this note we show how to introduce physical
constraints in the localization problem in sensor networks. This
is based on extending the classical STRESS function from
distance geometry and multidimensional scaling. We present the
underlying framework and demonstrate it with three examples:
penalizing the sensors for being in high elevation areas, removing
sensors from forbidden areas, and forcing the sensors to be on
pre-described curves.

Index Terms - Sensor localization, sensor networks, STRESS
function, multidimensional scaling, distance geometry, physical
constraints.

I. I NTRODUCTION

Automatic sensor localization is one of the most fundamen-
tal problems in the area of sensor networks. Sensor data needs
to be registered to its physical location to be of use in the major
applications of sensor networks. For large scale and inexpen-
sive networks, it is not possible to include GPS capability on
every device. Therefore, automatic sensor localization based
on pairwise (local) information has received a lot of attention
in recent years. The basic idea is to use information such
as signal strength, time-of-arrival, or angle-of-arrival, between
a sensor and some of its local neighbors (often denoted as
pairwisedissimilarities), to compute the physical coordinates
of the sensors. See for example [3] for some literature on
the subject and details on the basic requirements of sensor
localization algorithms.

Computing point (sensor) coordinates from pairwise dis-
similarities is a classical problem in distance geometry [2].
Such problems arise for example in molecular biology, where
protein structures are to be determined from a few noisy mea-
surements of pairwise distances obtained from X-ray crystal-
lography or NMR. The same task is the fundamental problem
in multidimensional scaling [1], [4], where the primary goal is
to represent and visualize in low dimensional Euclidean space
a set of pairwise dissimilarities obtained, for example, from
psychophysical experiments. The sensor localization problem
is nothing else than another application/extension of these
theories.

Often, in addition to the pairwise dissimilarities, some prior
or learned information about the physical environment is also
available. For example, if we are localizing active cellular
phones in the heart of the winter in Minnesota, it is very
unlikely that they will be located in the middle of a lake.
Similarly, it is unlikely that sensors for ocean waves activity
are located far inland. The same physical prior knowledge
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is valid for chemical and control sensors for example. This
physical information is very common and imposes an addi-
tional constraint in the sensor localization problem. Although
multidimensional scaling has studied the constrained scenario
[1], [4], this important problem has not been part of the sensor
localization techniques developed in the literature. It is the
goal of this paper to present a simple framework for sensor
localization with physical constraints.

Next, Section II, describes the framework for sensor lo-
calization with constraints. Experimental results for particular
physical scenarios are presented in Section III, while conclud-
ing remarks are given in Section IV.

II. CONSTRAINED SENSOR LOCALIZATION

We now introduce the proposed framework for constrained
node localization in sensor networks. Consider a network with
N nodes in aD dimensional space (usuallyD = 2, 3). Let
xi ∈ <D, i = 1..N , be the coordinates for each one of the
sensors. We assume that we measure pairwise dissimilarities
δij between sensorsi andj at positionsxi andxj as Euclidean
distances:1

δij =‖ xi − xj ‖=
√

(xi − xj)T (xi − xj).

These pairwise distances can be obtained for example via
received signal strength or time of arrival, and are often noisy.
Also, not all the pairwise distances need to be available.

We propose to find the constrained sensor positions from the
available setδij via the minimization of the following global
cost function:

S =
∑
ij

wij(δij − dij(X))2 + λ
∑

i

f(xi). (1)

Here,wij represents the accuracy of the measurementsδij

(e.g., wij = 0 is a measurement between sensorsi and j is
not available),X stands for theN × D matrix of unknown
coordinates,dij(X) is the Euclidean distance between the
searched coordinates for the sensorsi and j, f(xi) provides
the penalty (constraint) for positioning sensori at coordinate
xi, and λ is a scalar parameter that controls the tradeoff
between the accuracy to the provided dissimilaritiesδij and
the constraints given byf(·). The first sum is over all the
pairs, while the second one if over each sensor.

The first term in the energy (1) is the classical STRESS
in multidimensional scaling [1], [4], and has been previously
used for sensor localization, see [3] and references therein.
The novelty in our approach is in the introduction of the
second term,

∑
i f(xi). The penalty functionf can represent

1The framework here introduced, as well as the general theory of multidi-
mensional scaling, is applicable to other measures of dissimilarities, including
geodesic distances for example [6].
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probability of finding sensori at a given location, or can
penalize for locating the sensors in forbidden or unreasonable
areas. In other words, it provides constraints on the sensor
localization that come from prior or learned knowledge about
the sensors network physical environment.2

Note that all practical algorithms for sensor localization that
follow energy functions of the form of the STRESS cost are
prune to local minima. As a consequence, it is likely they will
locate the sensors in low probability or even forbidden areas.
This is also due to the noise in the available dissimilarities
δij . Thereby, using the cost function (1), even as a second
refinement step, is crucial.

III. E XPERIMENTAL RESULTS

We now present examples of our proposed constrained
sensor localization framework. In particular, three different
selections for the penalty functionf in Equation (1) are
presented. First, in Figure 1 we localize the sensors following a
topographic map. We definef to act as a probability function,
with probability proportional to the local elevation, the higher
the point the lower the probability to find a sensor there. In
Figure 2, we penalize for sensors located inside the two large
lake areas. This is done by designingf to be strictly positive
inside the forbidden areas (lake) and zero otherwise. Moreover,
f increases with the distance to the border of the lake. Finally,
in Figure 3, we constrain the sensors to be on a given curve
(the yellow line). This is done by definingf to be the unsigned
distance to the curve.

In all the examples we start from a given configuration,
blue squares for Figure 1 and green squares for figures 2 and
3, that can be obtained from any of the current state-of-the-
art and unconstrained sensor localization techniques, e.g., [3].
Then, we minimize the energy given by (1), obtaining the
red dots as the new and now constrained sensors position.
We used standard optimization techniques from the Matlab
Optimization Toolbox, e.g.,fminsearch[5], while more sophis-
ticated ones could be used as well. In particular, the local cost
decomposition for the STRESS developed in [3] is also valid
for the constrained STRESS here introduce, thereby leading
to the development of distributed optimization algorithms if
desired.

IV. CONCLUSIONS

In this note we have addressed for the first time the problem
of sensor localization with physical constraints. We have ex-
tended the classical STRESS function from distance geometry
and multidimensional scaling theories, which is frequently
used in the sensor networks arena, to include an extra term that
represents the available prior information about the physical
environment. We exemplified the ideas by constraining the
sensors to be in low elevation areas, outside of forbidden
zones, and to be located on predefined curves.

2Costa et al., [3], proposed an extra quadratic term in their modified
STRESS function that penalizes for individual sensorsi to be located far
from pre-established positions̄xi:

∑
i
ri ‖ xi − x̄i ‖, for confidence values

ri. This is a particular case of the physically motivated constrained framework
here proposed.

Fig. 1. The elevation data is used to define the penalty functionf . The higher
the area, the lower the probability of finding a sensor there. Note how the
blue squares, marking the original sensor locations, move to the red squares
located at lower elevation regions. The elevation map goes from dark blue,
representing low elevations, to dark red, representing high elevations. The
blue spots are zones of holes in the elevation information.

The proposed algorithm can be used as a second step,
after constraint-free and efficient sensor localization tech-
niques have been applied to the available pairwise dissimilarity
measures. To efficiently use our proposed energy directly,
distributed minimization algorithms have to be developed. For
some constraints, these are already available in the multidi-
mensional and distance geometry literature, while for others,
such as those coming from distance functions, they need to be
developed (based on these available algorithms). Extending
the current work to angle-of-arrival information is of great
significance as well. These directions, together with the use of
our technique for large real sensor networks, are the subject
of future research.
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Fig. 2. Examples of placing the sensors outside of the lake areas. On the top left we see the results, where all the sensors have been moved out of the
lake. On the right we show the sensor positions for different values of the parameterλ in Equation (1). On the second row, left, we plot the energy (1) as a
function of the minimization iteration. On the second row, right, we plot the average percentage deviation of the pairwise distance function, with respect to
the initial condition of the optimization, as a function ofλ (this corresponds to the figure on the top right).
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Fig. 3. Examples of placing the sensors in a curve, the yellow line. Results for two different values ofλ are shown in the first row, with a higher value on
the right (note how all the sensors are located on the yellow line). A different distances configuration is shown in the second row, left. In the second row,
right, an additional example is shown, where some of the pairwise distances between the sensors are not available (wij = 0 in Equation (1)).)


